نوشته‌ها

مجموعه داده MNIST Dataset

اگر به یادگیری عمیق (Deep Learning) یا بینایی ماشین علاقه‌مند هستید، مجموعه داده MNIST یکی از بهترین گزینه‌ها برای شروع است. این مجموعه شامل تصاویر دست‌نویس اعداد 0 تا 9 بوده و برای تمرین مدل‌های دسته‌بندی در یادگیری ماشین و یادگیری عمیق طراحی شده است.


توضیح کوتاه درباره مجموعه داده MNIST

  • نوع داده: تصاویر سیاه و سفید 28×28 پیکسلی از اعداد دست‌نویس.
  • تعداد نمونه‌ها:
    • داده‌های آموزشی: 60,000 نمونه
    • داده‌های تست: 10,000 نمونه
  • تعداد کلاس‌ها: 10 (اعداد 0 تا 9).

هدف از این مجموعه داده، دسته‌بندی صحیح تصاویر اعداد دست‌نویس است.


کاربردها و مزایا

  1. شروع کار با شبکه‌های عصبی: برای درک اصول شبکه‌های عصبی، این مجموعه داده بسیار ایده‌آل است.
  2. تمرین مدل‌های ساده و پیچیده: از الگوریتم‌های ساده مثل Logistic Regression تا مدل‌های پیچیده مانند CNN را می‌توان روی این داده آزمایش کرد.
  3. سبک و سریع: پردازش و آموزش روی این مجموعه داده زمان زیادی نمی‌برد و نیاز به منابع سخت‌افزاری سنگین ندارد.

ساختار داده‌ها

هر تصویر در قالب آرایه‌ای 28×28 ارائه شده که هر مقدار نشان‌دهنده شدت روشنایی یک پیکسل است (مقداری بین 0 تا 255).


چگونه به این داده‌ها دسترسی پیدا کنید؟

این مجموعه داده به صورت رایگان در دسترس است. لینک دانلود مستقیم:
دانلود مجموعه داده MNIST


پیشنهادات برای پروژه‌های یادگیری

  • ساخت یک مدل ساده با استفاده از الگوریتم‌های پایه مانند KNN یا SVM.
  • پیاده‌سازی یک شبکه عصبی کانولوشن (CNN) برای دسته‌بندی تصاویر.
  • بررسی تأثیر کاهش ابعاد با PCA روی عملکرد مدل.
  • بهبود دقت با تکنیک‌های Data Augmentation.

مجموعه داده MNIST یک انتخاب کلاسیک برای ورود به دنیای بینایی ماشین و یادگیری عمیق است که مفاهیم اولیه را به بهترین شکل آموزش می‌دهد. 🚀

مجموعه داده اوپن سورس Titanic Dataset

یکی از محبوب‌ترین مجموعه داده‌ها برای شروع یادگیری ماشین، مجموعه داده Titanic است. این مجموعه داده به شما کمک می‌کند مفاهیمی مانند پیش‌پردازش داده، تحلیل ویژگی‌ها و الگوریتم‌های دسته‌بندی را تمرین کنید.


توضیح کوتاه درباره مجموعه داده Titanic

مجموعه داده Titanic اطلاعات مربوط به مسافران کشتی معروف تایتانیک را شامل می‌شود که در سال 1912 غرق شد. این مجموعه شامل ویژگی‌هایی مانند:

  • سن (Age)
  • جنسیت (Sex)
  • کلاس بلیط (Passenger Class)
  • قیمت بلیط (Fare)
  • داشتن خانواده همراه (Siblings/Spouses Aboard)
  • زنده ماندن یا فوت شدن (Survived)

هدف اصلی در کار با این مجموعه داده پیش‌بینی احتمال زنده ماندن مسافران با استفاده از ویژگی‌های موجود است.


کاربردها و مزایا

  1. تمرین دسته‌بندی: این مجموعه برای مسائل دسته‌بندی (Classification) طراحی شده است.
  2. آشنایی با پاکسازی داده: داده‌ها شامل مقادیر گمشده هستند، که این فرصت خوبی برای یادگیری تکنیک‌های مدیریت داده‌های ناقص است.
  3. تحلیل ویژگی‌ها: می‌توانید ویژگی‌های مختلف را بررسی کرده و تأثیر آن‌ها بر روی متغیر هدف (Survived) را تحلیل کنید.
  4. آسان برای شروع: حجم داده کم است و تحلیل آن پیچیدگی بالایی ندارد، بنابراین برای تازه‌کارها ایده‌آل است.

ساختار داده‌ها

تعداد کل نمونه‌ها: 891
تعداد ویژگی‌ها: 12 (شامل متغیر هدف)


چگونه به این داده‌ها دسترسی پیدا کنید؟

این مجموعه داده به صورت رایگان در وب‌سایت Kaggle منتشر شده است و می‌توانید آن را از لینک زیر دانلود کنید:

دانلود مجموعه داده Titanic از Kaggle

دانلود مستقیم مجموعه داده Titanic


پیشنهادات برای پروژه‌های یادگیری

  • ساخت یک مدل ساده با الگوریتم‌های پایه‌ای مانند Logistic Regression یا Decision Tree.
  • تحلیل تأثیر ویژگی‌های مختلف (مانند جنسیت یا کلاس بلیط) روی زنده ماندن.
  • ایجاد گزارش تصویری با استفاده از کتابخانه‌هایی مانند Matplotlib و Seaborn برای درک بهتر داده‌ها.
  • اعمال روش‌های بهینه‌سازی پیشرفته مانند Grid Search برای بهبود عملکرد مدل.

با استفاده از مجموعه داده Titanic، می‌توانید یادگیری ماشین را به صورت عملی آغاز کرده و دانش خود را به سرعت ارتقا دهید. 🌟

یک مثال سریع: مجموعه داده‌ی Iris

بیایید سریع ببینیم تحلیل داده‌ها و یادگیری ماشین چطور روی مجموعه داده‌های واقعی کار می‌کنن. هدف اینجا اینه که پتانسیل پایتون و یادگیری ماشین رو روی برخی مسائل جالب نشون بدیم.

در این مثال خاص، هدف اینه که گونه‌ی گل Iris رو بر اساس طول و عرض کاسبرگ‌ها و گلبرگ‌ها پیش‌بینی کنیم. اول، باید یه مدل بسازیم بر اساس مجموعه داده‌ای که اندازه‌گیری‌های گل‌ها و گونه‌های مربوط به اون‌ها رو داره. بر اساس کدمون، کامپیوتر “از داده‌ها یاد می‌گیره” و الگوهایی از اون استخراج می‌کنه. بعد از این، چیزی که یاد گرفته رو روی یه مجموعه داده‌ی جدید اعمال می‌کنه. بیایید به کد نگاه کنیم:

مرحله 1: نصب و وارد کردن کتابخانه‌ها

اولین کاری که باید انجام بدیم نصب و وارد کردن کتابخانه‌های لازم هست:

import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

مرحله 2: بارگیری داده‌ها

حالا مجموعه داده‌ی Iris رو بارگیری می‌کنیم:

# بارگیری مجموعه داده‌ی Iris
iris = load_iris()
data = pd.DataFrame(data=iris.data, columns=iris.feature_names)
data['species'] = iris.target

مرحله 3: تقسیم داده‌ها به مجموعه‌ی آموزشی و آزمایشی

برای ارزیابی عملکرد مدل، داده‌ها رو به دو بخش آموزشی و آزمایشی تقسیم می‌کنیم:

# تقسیم داده‌ها به مجموعه‌های آموزشی و آزمایشی
X = data[iris.feature_names]
y = data['species']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

مرحله 4: ساخت و آموزش مدل

حالا یک مدل جنگل تصادفی (Random Forest) می‌سازیم و اون رو آموزش می‌دیم:

# ساخت و آموزش مدل جنگل تصادفی
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

مرحله 5: پیش‌بینی و ارزیابی مدل

بعد از آموزش مدل، پیش‌بینی‌ها رو روی مجموعه‌ی آزمایشی انجام می‌دیم و دقت مدل رو ارزیابی می‌کنیم:

# پیش‌بینی روی مجموعه‌ی آزمایشی
y_pred = model.predict(X_test)

# ارزیابی دقت مدل
accuracy = accuracy_score(y_test, y_pred)
print(f'DAccuracy: {accuracy * 100:.2f}%')

نتیجه

اگر همه چیز به درستی پیش بره، باید دقت مدل رو ببینیم که به احتمال زیاد بالاست، چون مجموعه داده‌ی Iris نسبتاً ساده و تمیزه.

توضیح مختصر کد

  • بارگیری داده‌ها: ابتدا مجموعه داده‌ی Iris رو از کتابخانه‌ی sklearn بارگیری می‌کنیم و اون رو به یک DataFrame تبدیل می‌کنیم.
  • تقسیم داده‌ها: داده‌ها رو به دو بخش آموزشی (برای آموزش مدل) و آزمایشی (برای ارزیابی مدل) تقسیم می‌کنیم.
  • ساخت و آموزش مدل: یک مدل جنگل تصادفی می‌سازیم و اون رو با استفاده از داده‌های آموزشی آموزش می‌دیم.
  • پیش‌بینی و ارزیابی: پیش‌بینی‌ها رو روی مجموعه‌ی آزمایشی انجام می‌دیم و دقت مدل رو محاسبه می‌کنیم.

این یک مثال ساده اما کاربردی از اینه که چطور می‌تونیم با استفاده از پایتون و یادگیری ماشین، مسائل جالب و واقعی رو حل کنیم و بینش‌های ارزشمندی از داده‌ها استخراج کنیم.

محدودیت‌های تحلیل داده‌ها و یادگیری ماشین

شاید از اخبار و مقالات آنلاین شنیده باشید که یادگیری ماشین و تحلیل پیشرفته داده‌ها می‌تونن ساختار جامعه رو تغییر بدن (اتوماسیون، از دست رفتن شغل‌ها، درآمد پایه همگانی، تسلط هوش مصنوعی).

در واقع، جامعه در حال حاضر داره تغییر می‌کنه. پشت صحنه، یادگیری ماشین و تحلیل مداوم داده‌ها در حال انجامه، به خصوص در موتورهای جستجو، شبکه‌های اجتماعی و تجارت الکترونیک. یادگیری ماشین حالا کارهایی مثل این‌ها رو راحت‌تر و سریع‌تر انجام می‌ده:

  • آیا در تصویر چهره انسانی وجود داره؟
  • آیا کاربر روی تبلیغ کلیک می‌کنه؟ (آیا تبلیغ شخصی‌سازی شده و برای او جذابه؟)
  • چطور کپشن‌های دقیق‌تری روی ویدیوهای یوتیوب ایجاد کنیم؟ (تشخیص گفتار و تبدیل به متن)
  • آیا موتور یا قطعه‌ای خراب می‌شه؟ (نگهداری پیشگیرانه در تولید)
  • آیا تراکنش جعلیه؟
  • آیا ایمیل اسپم هست یا نه؟

این‌ها به لطف دسترسی به مجموعه داده‌های عظیم و قدرت پردازش بالا ممکن شده. با این حال، تحلیل پیشرفته داده‌ها با استفاده از پایتون (و یادگیری ماشین) جادو نیست. این‌ها راه‌حل همه مشکلات نیستن. چرا که دقت و عملکرد ابزارها و مدل‌های ما به شدت وابسته به یکپارچگی داده‌ها و مهارت و قضاوت خودمونه.

دقت و عملکرد

رایج‌ترین استفاده از تحلیل داده‌ها در پیش‌بینی‌های موفق (پیش‌بینی) و بهینه‌سازیه. آیا تقاضا برای محصول ما در پنج سال آینده افزایش پیدا می‌کنه؟ بهترین مسیرها برای تحویل‌کالا که کمترین هزینه عملیاتی رو دارن چیه؟

به همین دلیله که بهبود دقت حتی به اندازه 1% می‌تونه به میلیون‌ها دلار درآمد اضافی تبدیل بشه. مثلاً، فروشگاه‌های بزرگ می‌تونن برخی محصولات رو از قبل انبار کنن اگه نتایج تحلیل نشون بده تقاضا در حال افزایشه. حمل و نقل و لجستیک هم می‌تونن مسیرها و برنامه‌های بهتری برای استفاده کمتر از سوخت و تحویل‌های سریع‌تر برنامه‌ریزی کنن.

علاوه بر بهبود دقت، اولویت دیگه‌ای هم روی اطمینان از عملکرد قابل اعتماده. تحلیل ما چطور روی مجموعه داده‌های جدید عمل می‌کنه؟ آیا باید عوامل دیگه‌ای رو در تحلیل داده‌ها و انجام پیش‌بینی‌ها در نظر بگیریم؟ کار ما باید همیشه نتایج دقیق و قابل اعتماد تولید کنه. در غیر این صورت، اصلاً علمی نیست چون نتایج قابل بازتولید نیستن.

کشف فرصت‌ها

علاوه بر پیش‌بینی و بهینه‌سازی موفق، تحلیل داده مناسب می‌تونه به ما کمک کنه تا فرصت‌ها رو کشف کنیم. بعداً ممکنه متوجه بشیم که کاری که انجام دادیم در پروژه‌ها و زمینه‌های دیگه هم کاربرد داره. می‌تونیم اگه عمیق‌تر بررسی کنیم، نقاط ناهنجار و الگوهای جالب رو هم شناسایی کنیم. مثلاً شاید مشتری‌ها در خوشه‌هایی قرار بگیرن که برای ما بزرگ باشه تا اون‌ها رو بررسی و بهره‌برداری کنیم. شاید تراکم‌های بالای غیرمعمولی از مشتری‌ها وجود داشته باشه که در یه محدوده درآمدی یا سطح هزینه‌ای خاص قرار بگیرن.

این‌ها فقط نمونه‌های معمول از کاربردهای تحلیل داده مناسب هستن. در فصل بعد، یکی از نمونه‌های پرکاربرد در نمایش پتانسیل امیدوارکننده تحلیل داده و یادگیری ماشین رو بحث می‌کنیم. همچنین، به بررسی پیامدها و فرصت‌های موجود می‌پردازیم.

آپاچی اسپارک

با افتخار اپاچی اسپارک (Apache Spark) را به عنوان یکی از معتبرترین و پرکاربردترین فریم‌ورک‌های پردازش داده توزیع‌شده معرفی می‌کنم. اسپارک نه تنها به عنوان یک ابزار برای پردازش داده بلکه به عنوان یک مجموعه از کتابخانه‌ها و ابزارهای توسعه نیز شناخته می‌شود.

چرا اسپارک مهم است؟

  • کارآیی بالا: اسپارک از مدل اجرای موازی و توزیع‌شده برای پردازش داده استفاده می‌کند، که به انجام پردازش‌های پیچیده بر روی داده‌های بزرگ با سرعت بسیار بالا کمک می‌کند. این به معنای اجرای سریع تر و کارآیی بهتر برای تحلیل داده‌هاست.
  • پشتیبانی از چندین زبان برنامه‌نویسی: اسپارک از زبان‌های متعددی از جمله Scala، Java، Python، و R پشتیبانی می‌کند. این امکان را فراهم می‌کند تا برنامه‌نویسان با زبانی که با آن آشنا هستند، به راحتی از این فریم‌ورک استفاده کنند.

معماری اسپارک

  • محیط اجرا (Runtime Environment): اسپارک بر روی یک کلاستر از کامپیوترها اجرا می‌شود. این کلاستر می‌تواند شامل چندین ماشین باشد و از طریق مدیریت کلاستر، اجرای پردازش‌ها را توزیع می‌کند.
  • مدل اجرای موازی: اسپارک از مدل MapReduce الهام گرفته است. کدهای برنامه شما به دسته‌های کوچک‌تر تقسیم شده و سپس بوسیله توابع map و reduce به همگام‌سازی و پردازش موازی انجام می‌شود.
  • توزیع متغیرها (Resilient Distributed Datasets – RDDs): از RDDs به عنوان یک مفهوم مهم در اسپارک برای نگهداری و پردازش داده‌ها استفاده می‌شود. RDDs تا زمانی که داده‌های توزیع‌شده را نمایندگی می‌کنند، امکان بازیابی و بازیابی داده در صورت خرابی را فراهم می‌کنند.

کاربردهای اسپارک

  • پردازش داده بزرگ: اسپارک به شرکت‌ها و سازمان‌ها این امکان را می‌دهد که داده‌های بزرگ را به بهره‌وری پردازش کنند. این امر در تحلیل داده‌ها، معدن‌کاری داده، پردازش و تحلیل لاگ‌های وب و بسیاری از دیگر کاربردها مفید است.
  • آموزش مدل‌های یادگیری عمیق (Deep Learning): اسپارک ابزارهایی مانند MLlib را ارائه می‌دهد که به برنامه‌نویسان امکان آموزش و اجرای مدل‌های یادگیری عمیق بر روی داده‌های خود را می‌دهد.
  • پردازش تصاویر و صدا: اسپارک قابلیت پردازش تصاویر و صدا را دارد و می‌تواند در کاربردهای مرتبط با تصاویر و ویدیوها مورد استفاده قرار گیرد.

خلاصه‌ی آخر

اپاچی اسپارک به عنوان یک فریم‌ورک قدرتمند برای پردازش داده‌های بزرگ و توزیع‌شده شناخته می‌شود. از کارآیی بالا، پشتیبانی از چندین زبان برنامه‌نویسی و معماری انعطاف‌پذیر اسپارک، تا کاربردهای متنوع و گسترده‌ای دارد. اگر به تحلیل داده‌های بزرگ و پردازش تصاویر، ویدئوها و یادگیری عمیق علاقه‌مند هستید، اسپارک یک ابزار بسیار مفید و قدرتمند برای شماست.

در طول زمان، اسپارک به یک اکوسیستم گسترده از کتابخانه‌ها و ابزارهای متنوع تبدیل شده است که برای کاربردهای مختلف توسعه داده می‌شوند. برخی از این ابزارها شامل:

  • MLlib: کتابخانه یادگیری ماشین برای اجرای الگوریتم‌های یادگیری ماشین و تحلیل داده.
  • GraphX: کتابخانه پردازش گراف برای تحلیل و مدیریت داده‌های گرافی.
  • Spark Streaming: برای پردازش و تحلیل داده‌های جریانی (Stream Data).
  • Spark SQL: برای اجرای کوئری‌ها و تحلیل داده‌ها با استفاده از SQL.
  • Structured Streaming: برای پردازش داده‌ها به صورت آنلاین و به روز رسانی مستمر.

در نهایت، اسپارک توسعه‌ی بهره‌وری و سرعت در پردازش داده‌های بزرگ را تا حد زیادی تسهیل می‌کند. از تحلیل داده‌های وب و شبکه‌های اجتماعی گرفته تا معدن‌کاری داده و آموزش مدل‌های یادگیری ماشین، اسپارک در میان بزرگترین شرکت‌ها و سازمان‌ها به عنوان یک ابزار اساسی برای پردازش داده‌های بزرگ شناخته می‌شود.

به طور کلی، اسپارک به عنوان یکی از مهمترین فریم‌ورک‌ها برای پردازش داده توزیع‌شده با توانمندی‌های بالا و امکانات گسترده تشخیص داده می‌شود. اگر در زمینه تحلیل داده فعالیت دارید یا به دنبال ابزاری برای پردازش داده‌های بزرگ هستید، اسپارک بسیار مناسب و حیاتی است.